DATA SCIENCE
- Home
- DATA SCIENCE
Data science continues to evolve as one of the most promising and in-demand career paths for skilled professionals. Today, successful data professionals understand that they must advance past the traditional skills of analyzing large amounts of data, data mining, and programming skills. In order to uncover useful intelligence for their organizations, data scientists must master the full spectrum of the data science life cycle and possess a level of flexibility and understanding to maximize returns at each phase of the process.
Data science is the domain of study that deals with vast volumes of data using modern tools and techniques to find unseen patterns, derive meaningful information, and make business decisions. Data science uses complex machine learning algorithms to build predictive models. The data used for analysis can come from many different sources and presented in various formats.
The Data Science Lifecycle
- Capture: Data Acquisition, Data Entry, Signal Reception, Data Extraction. This stage involves gathering raw structured and unstructured data.
- Maintain: Data Warehousing, Data Cleansing, Data Staging, Data Processing, Data Architecture. This stage covers taking the raw data and putting it in a form that can be used.
- Process: Data Mining, Clustering/Classification, Data Modeling, Data Summarization. Data scientists take the prepared data and examine its patterns, ranges, and biases to determine how useful it will be in predictive analysis.
- Analyze: Exploratory/Confirmatory, Predictive Analysis, Regression, Text Mining, Qualitative Analysis. Here is the real meat of the lifecycle. This stage involves performing the various analyses on the data.
- Communicate: Data Reporting, Data Visualization, Business Intelligence, Decision Making. In this final step, analysts prepare the analyses in easily readable forms such as charts, graphs, and reports.
The benefits of a data science platform
A data science platform reduces redundancy and drives innovation by enabling teams to share code, results, and reports. It removes bottlenecks in the flow of work by simplifying management and incorporating best practices. In general, the best data science platforms aim to:
- Make data scientists more productive by helping them accelerate and deliver models faster, and with less error
- Make it easier for data scientists to work with large volumes and varieties of data
- Deliver trusted, enterprise-grade artificial intelligence that’s bias-free, auditable, and reproducible